- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abbate, F (1)
-
Au, K. -Y (1)
-
Bailes, M (1)
-
Barr, E D (1)
-
Barr, E. D. (1)
-
Breton, R. P. (1)
-
Buchner, S (1)
-
Buchner, S. (1)
-
Burgay, M (1)
-
Burgay, M. (1)
-
Champion, D J (1)
-
Chen, W (1)
-
Choza, C (1)
-
Clark, C J (1)
-
Clark, C. J. (1)
-
Corongiu, A (1)
-
DeCesar, M E (1)
-
Dhillon, V. S. (1)
-
Dodge, O. G. (1)
-
Dutta, A (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the discovery of ten new pulsars in the globular cluster Terzan 5 as part of the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed Terzan 5 atL-band (856–1712 MHz) with the MeerKAT radio telescope for four hours on two epochs, and performed acceleration searches of 45 out of 288 tied-array beams covering the core of the cluster. We obtained phase-connected timing solutions for all ten discoveries, covering nearly two decades of archival observations from the Green Bank Telescope for all but one. Highlights include PSR J1748−2446ao which is an eccentric (e = 0.32) wide-orbit (orbital periodPb = 57.55 d) system. We were able to measure the rate of advance of periastron (ω̇) for this system allowing us to determine a total mass of 3.17 ± 0.02 M⊙. With a minimum companion mass (Mc) of ∼0.8 M⊙, PSR J1748−2446ao is a candidate double neutron star (DNS) system. If confirmed to be a DNS, it would be the fastest spinning pulsar (P = 2.27 ms) and the longest orbital period measured for any known DNS system. PSR J1748−2446ap has the second highest eccentricity for any recycled pulsar (e ∼ 0.905) and for this system we can measure the total mass (1.997 ± 0.006 M⊙) and estimate the pulsar and companion masses, (1.700−0.045+0.015 M⊙and 0.294−0.014+0.046 M⊙, respectively). PSR J1748−2446ar is an eclipsing redback (minimumMc ∼ 0.34 M⊙) system whose properties confirm it to be the counterpart to a previously published source identified in radio and X-ray imaging. We were also able to detectω̇for PSR J1748−2446au leading to a total mass estimate of 1.82 ± 0.07 M⊙and indicating that the system is likely the result of Case A Roche lobe overflow. With these discoveries, the total number of confirmed pulsars in Terzan 5 is 49, the highest for any globular cluster so far. These discoveries further enhance the rich set of pulsars known in Terzan 5 and provide scope for a deeper understanding of binary stellar evolution, cluster dynamics and ensemble population studies.more » « less
-
Dodge, O. G.; Breton, R. P.; Clark, C. J.; Burgay, M.; Strader, J.; Au, K. -Y; Barr, E. D.; Buchner, S.; Dhillon, V. S.; Ferrara, E. C.; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. icarus optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or $$0.43^{+0.04}_{-0.03}$$M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar.more » « less
An official website of the United States government
